A New Solution for Stochastic Optimal Power Flow: Combining Limit Relaxation with Iterative Learning Control
نویسندگان
چکیده
A stochastic optimal power flow (S-OPF) model considering uncertainties of load and wind power is developed based on chance constrained programming (CCP). The difficulties in solving the model are the nonlinearity and probabilistic constraints. In this paper, a limit relaxation approach and an iterative learning control (ILC) method are implemented to solve the S-OPF model indirectly. The limit relaxation approach narrows the solution space by introducing regulatory factors, according to the relationship between the constraint equations and the optimization variables. The regulatory factors are designed by ILC method to ensure the optimality of final solution under a predefined confidence level. The optimization algorithm for S-OPF is completed based on the combination of limit relaxation and ILC and tested on the IEEE 14-bus system.
منابع مشابه
Dynamical Control of Computations Using the Family of Optimal Two-point Methods to Solve Nonlinear Equations
One of the considerable discussions for solving the nonlinear equations is to find the optimal iteration, and to use a proper termination criterion which is able to obtain a high accuracy for the numerical solution. In this paper, for a certain class of the family of optimal two-point methods, we propose a new scheme based on the stochastic arithmetic to find the optimal number of iterations in...
متن کاملPerfect Tracking of Supercavitating Non-minimum Phase Vehicles Using a New Robust and Adaptive Parameter-optimal Iterative Learning Control
In this manuscript, a new method is proposed to provide a perfect tracking of the supercavitation system based on a new two-state model. The tracking of the pitch rate and angle of attack for fin and cavitator input is of the aim. The pitch rate of the supercavitation with respect to fin angle is found as a non-minimum phase behavior. This effect reduces the speed of command pitch rate. Control...
متن کاملApproximate Inference and Stochastic Optimal Control
We propose a novel reformulation of the stochastic optimal control problem as an approximate inference problem, demonstrating, that such a interpretation leads to new practical methods for the original problem. In particular we characterise a novel class of iterative solutions to the stochastic optimal control problem based on a natural relaxation of the exact dual formulation. These theoretica...
متن کاملImprovement of DC Optimal Power Flow Problem Based on Nodal Approximation of Transmission Losses
This paper presents a method to improve the accuracy of DC Optimal Power Flow problem, based on evaluating some nodal shares of transmission losses, and illustrates its efficiency through comparing with the conventional DCOPF solution, as well as the full AC one. This method provides three main advantages, confirming its efficiency: 1- It results in such generation levels, line flows, and noda...
متن کاملOptimal Placement and Sizing of TCSC & SVC for Improvement Power System Operation using Crow Search Algorithm
Abstract: The need for more efficient power systems has prompted the use of a new technologies includes Flexible AC transmission system (FACTS) devices. FACTS devices provides new opportunity for controlling the line power flow and minimizing losses while maintaining the bus voltages within a permissible limit. In this thesis a new method is proposed for optimal placement and sizing of Thyristo...
متن کامل